Improved efficiency of inverted organic light-emitting diodes using tin dioxide nanoparticles as an electron injection layer.

نویسندگان

  • Hyunkoo Lee
  • Chan-Mo Kang
  • Myeongjin Park
  • Jeonghun Kwak
  • Changhee Lee
چکیده

We demonstrated highly efficient inverted bottom-emission organic light-emitting diodes (IBOLEDs) using tin dioxide (SnO2) nanoparticles (NPs) as an electron injection layer at the interface between the indium tin oxide (ITO) cathode and the organic electron transport layer. The SnO2 NP layer can facilitate the electron injection since the conduction band energy level of SnO2 NPs (-3.6 eV) is located between the work function of ITO (4.8 eV) and the lowest unoccupied molecular orbital (LUMO) energy level of typical electron transporting molecules (-2.5 to -3.5 eV). As a result, the IBOLEDs with the SnO2 NPs exhibited a decrease of the driving voltage by 7 V at 1000 cd/m(2) compared to the device without SnO2 NPs. They also showed a significantly enhanced luminous current efficiency of 51.1 cd/A (corresponds to the external quantum efficiency of 15.6%) at the same brightness, which is about two times higher values than that of the device without SnO2 NPs. We also measured the angular dependence of irradiance and electroluminescence (EL) spectra in the devices with SnO2 NPs and found that they had a nearly Lambertian emission profile and few shift in EL spectrum through the entire viewing angles, which are considered as remarkable and essential results for the application of OLEDs to display devices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using lithium carbonate-based electron injection structures in high-performance inverted organic light-emitting diodes.

A lithium carbonate-based bi-layered electron injection layer was introduced into inverted organic light-emitting diodes (OLEDs) to reduce operation voltages and achieve carrier balance. Ultraviolet photoemission spectroscopy was used to confirm the existence of an interfacial dipole between the organic and lithium carbonate layers, which is a dominating factor related to the device performance...

متن کامل

Enhanced Optoelectronic Properties of PFO/Fluorol 7GA Hybrid Light Emitting Diodes via Additions of TiO2 Nanoparticles

The effect of TiO2 nanoparticle (NP) content on the improvement of poly(9,9′-di-noctylfluorenyl-2,7-diyl) (PFO)/Fluorol 7GA organic light emitting diode (OLED) performance is demonstrated here. The PFO/Fluorol 7GA blend with specific ratios of TiO2 NPs was prepared via a solution blending method before being spin-coated onto an indium tin oxide (ITO) substrate to act as an emissive layer in OLE...

متن کامل

Organic Light-Emitting Diodes with F16CuPC as an Efficient Hole-Injection Layer

We report a new hole-injection material, copper hexadecafluorophthalocyanine (F16CuPC) for organic light-emitting diodes (OLEDs) consisting of N,N’-di(1-naphthyl)-N,N’-diphenylbenzidine (α-NPD) as a hole-transport layer and 8-tris-hydroxyquinoline aluminum (Alq3) as a light-emitting and electron-transport layer. The insertion of the F16CuPC between indium-tin oxide (ITO) and α-NPD reduces the o...

متن کامل

Improved hole-injection contact for top-emitting polymeric diodes

Articles you may be interested in Lithium fluoride injection layers can form quasi-Ohmic contacts for both holes and electrons Appl. Efficient inverted top-emitting organic light-emitting diodes using ultrathin MoO 3 / C 60 bilayer structure to enhance hole injection Appl. Tuning hole injection and charge recombination with self-assembled monolayer on silver anode in top-emitting organic light-...

متن کامل

Highly efficient hybrid inorganic-organic light-emitting diodes by using air-stable metal oxides and a thick emitting layer.

During the last two decades, considerable progress has been made with the device efficiency and lifetime of organic lightemitting diodes (OLEDs), enabling their application in flatpanel displays and solid-state lighting. To realize high-performance, full-color OLED devices as commercial products, it is necessary to further improve the power efficiency and lifetime of the devices. To date, resea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • ACS applied materials & interfaces

دوره 5 6  شماره 

صفحات  -

تاریخ انتشار 2013